Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Eur J Pharm Sci ; 192: 106616, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865284

RESUMO

Thiopurine S-methyltransferase (TPMT) is an important enzyme involved in the deactivation of thiopurines and represents a major determinant of thiopurine-related toxicities. Despite its well-known importance in thiopurine metabolism, the understanding of its endogenous role is lacking. In the present study, we aimed to gain insight into the molecular processes involving TPMT by applying a data fusion approach to analyze whole-genome expression data. The RNA profiling was done on whole blood samples from 1017 adult male and female donors to the Estonian biobank using Illumina HTv3 arrays. Our results suggest that TPMT is closely related to genes involved in oxidoreductive processes. The in vitro experiments on different cell models confirmed that TPMT influences redox capacity of the cell by altering S-adenosylmethionine (SAM) consumption and consequently glutathione (GSH) synthesis. Furthermore, by comparing gene networks of subgroups of individuals, we identified genes, which could have a role in regulating TPMT activity. The biological relevance of identified genes and pathways will have to be further evaluated in molecular studies.


Assuntos
Metiltransferases , Purinas , Adulto , Feminino , Humanos , Masculino , Perfilação da Expressão Gênica , Mercaptopurina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredução , S-Adenosilmetionina/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901693

RESUMO

Although the aetiology of non-syndromic orofacial clefts (nsOFCs) is usually multifactorial, syndromic OFCs (syOFCs) are often caused by single mutations in known genes. Some syndromes, e.g., Van der Woude syndrome (VWS1; VWS2) and X-linked cleft palate with or without ankyloglossia (CPX), show only minor clinical signs in addition to OFC and are sometimes difficult to differentiate from nsOFCs. We recruited 34 Slovenian multi-case families with apparent nsOFCs (isolated OFCs or OFCs with minor additional facial signs). First, we examined IRF6, GRHL3, and TBX22 by Sanger or whole exome sequencing to identify VWS and CPX families. Next, we examined 72 additional nsOFC genes in the remaining families. Variant validation and co-segregation analysis were performed for each identified variant using Sanger sequencing, real-time quantitative PCR and microarray-based comparative genomic hybridization. We identified six disease-causing variants (three novel) in IRF6, GRHL3, and TBX22 in 21% of families with apparent nsOFCs, suggesting that our sequencing approach is useful for distinguishing syOFCs from nsOFCs. The novel variants, a frameshift variant in exon 7 of IRF6, a splice-altering variant in GRHL3, and a deletion of the coding exons of TBX22, indicate VWS1, VWS2, and CPX, respectively. We also identified five rare variants in nsOFC genes in families without VWS or CPX, but they could not be conclusively linked to nsOFC.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Hibridização Genômica Comparativa , Proteínas de Ligação a DNA/metabolismo , Fatores Reguladores de Interferon/genética , Mutação , Linhagem , Fatores de Transcrição/metabolismo
3.
J Control Release ; 355: 371-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738969

RESUMO

Biofilm-associated diseases such as periodontitis are widespread and challenging to treat which calls for new strategies for their effective management. Probiotics represent a promising approach for targeted treatment of dysbiosis in biofilm and modulation of host immune response. In this interdisciplinary study, nanofibers with two autochthonous Bacillus strains 27.3.Z and 25.2.M were developed. The strains were isolated from the oral microbiota of healthy individuals, and their genomes were sequenced and screened for genes associated with antimicrobial and immunomodulatory activities, virulence factors, and transferability of resistance to antibiotics. Spores of two Bacillus strains were incorporated individually or in combination into hydrophilic poly(ethylene oxide) (PEO) and composite PEO/alginate nanofibers. The nanofiber mats were characterised by a high loading of viable spores (> 7 log CFU/mg) and they maintained viability during electrospinning and 6 months of storage at room temperature. Spores were rapidly released from PEO nanofibers, while presence of alginate in the nanofibers prolonged their release. All formulations exhibited swelling, followed by transformation of the nanofiber mat into a hydrogel and polymer erosion mediating spore release kinetics. The investigated Bacillus strains released metabolites, which were not cytotoxic to peripheral blood mononuclear cells (PBMCs) in vitro. Moreover, their metabolites exhibited antibacterial activity against two periodontopathogens, an antiproliferative effect on PBMCs, and inhibition of PBMC expression of proinflammatory cytokines. In summary, the developed nanofiber-based delivery system represents a promising therapeutic approach to combat biofilm-associated disease on two fronts, namely via modulation of the local microbiota with probiotic bacteria and host immune response with their metabolites.


Assuntos
Bacillus , Nanofibras , Humanos , Leucócitos Mononucleares , Bacillus/genética , Antibacterianos/farmacologia , Polietilenoglicóis , Alginatos
4.
Cell Death Dis ; 13(10): 860, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209148

RESUMO

Chronic lymphocytic leukemia (CLL) is a hematological neoplasm of CD19-positive mature-appearing B lymphocytes. Despite the clinical success of targeted therapies in CLL, the development of resistance diminishes their therapeutic activity. This is also true for the Bcl-2 antagonist venetoclax. We investigated the molecular mechanisms that drive venetoclax resistance in CLL, with a clear focus to provide new strategies to successfully combat it. Activation of CLL cells with IFNγ, PMA/ionomycin, and sCD40L diminished the cytotoxicity of venetoclax. We demonstrated that the metabolic activity of cells treated with 1 nM venetoclax alone was 48% of untreated cells, and was higher for cells co-treated with IFNγ (110%), PMA/ionomycin (78%), and sCD40L (62%). As of molecular mechanism, we showed that PMA/ionomycin and sCD40L triggered translocation of NFκB in primary CLL cells, while IFNγ activated p38 MAPK, suppressed spontaneous and venetoclax-induced apoptosis and induced formation of the immunoproteasome. Inhibition of immunoproteasome with ONX-0914 suppressed activity of immunoproteasome and synergized with venetoclax against primary CLL cells. On the other hand, inhibition of p38 MAPK abolished cytoprotective effects of IFNγ. We demonstrated that venetoclax-resistant (MEC-1 VER) cells overexpressed p38 MAPK and p-Bcl-2 (Ser70), and underexpressed Mcl-1, Bax, and Bak. Inhibition of p38 MAPK or immunoproteasome triggered apoptosis in CLL cells and overcame the resistance to venetoclax of MEC-1 VER cells and venetoclax-insensitive primary CLL cells. In conclusion, the p38 MAPK pathway and immunoproteasome represent novel targets to combat venetoclax resistance in CLL.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Ionomicina/farmacologia , Ionomicina/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas , Proteína X Associada a bcl-2 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Cardiovasc Dev Dis ; 9(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35735795

RESUMO

Several environmental and genetic factors may influence the risk of congenital heart defects (CHDs), which can have a substantial impact on pediatric morbidity and mortality. We investigated the association of polymorphisms in the genes of the folate and methionine pathways with CHDs using different strategies: a case-control, mother-child pair design, and a family-based association study. The polymorphism rs2236225 in the MTHFD1 was confirmed as an important modulator of CHD risk in both, whereas polymorphisms in MTRR, FPGS, and SLC19A1 were identified as risk factors in only one of the models. A strong synergistic effect on the development of CHDs was detected for MTHFD1 polymorphism and a lack of maternal folate supplementation during early pregnancy. A common polymorphism in the MTHFD1 is a genetic risk factor for the development of CHD, especially in the absence of folate supplementation in early pregnancy.

6.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163524

RESUMO

Anti-CD20 monoclonal antibodies (MAbs) have revolutionized the treatment of B-cell leukemia and lymphoma. However, many patients do not respond to such treatment due to either deficiency of the complementary immune response or resistance to apoptosis. Other currently available treatments are often inadequate or induce major side effects. Therefore, there is a constant need for improved therapies. The prostaglandin E2 receptor 4 (EP4) receptor has been identified as a promising therapeutic target for hematologic B-cell malignancies. Herein, we report that EP4 receptor agonists PgE1-OH and L-902688 have exhibited enhanced cytotoxicity when applied together with anti-CD20 MAbs rituximab, ofatumumab and obinutuzumab in vitro in Burkitt lymphoma cells Ramos, as well as in p53-deficient chronic lymphocytic leukemia (CLL) cells MEC-1. Moreover, the enhanced cytotoxic effects of EP4 receptor agonists and MAbs targeting CD20 have been identified ex vivo on primary lymphocytes B obtained from patients diagnosed with CLL. Incubation of cells with PgE1-OH and L-902688 preserved the expression of CD20 molecules, further confirming the anti-leukemic potential of EP4 receptor agonists in combination with anti-CD20 MAbs. Additionally, we demonstrated that the EP4 receptor agonist PgE-1-OH induced apoptosis and inhibited proliferation via the EP4 receptor triggering in CLL. This work has revealed very important findings leading towards the elucidation of the anticancer potential of PgE1-OH and L-902688, either alone or in combination with MAbs. This may contribute to the development of potential therapeutic alternatives for patients with B-cell malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD20/imunologia , Leucemia de Células B/metabolismo , Linfoma de Células B/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Humanos , Leucemia de Células B/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Pirrolidinonas/farmacologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Tetrazóis/farmacologia
7.
Molecules ; 26(21)2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771026

RESUMO

Early diagnosis with rapid detection of the virus plays a key role in preventing the spread of infection and in treating patients effectively. In order to address the need for a straightforward detection of SARS-CoV-2 infection and assessment of viral spread, we developed rapid, sensitive, extraction-free one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) tests for detecting SARS-CoV-2 in saliva. We analyzed over 700 matched pairs of saliva and nasopharyngeal swab (NSB) specimens from asymptomatic and symptomatic individuals. Saliva, as either an oral cavity swab or passive drool, was collected in an RNA stabilization buffer. The stabilized saliva specimens were heat-treated and directly analyzed without RNA extraction. The diagnostic sensitivity of saliva-based RT-qPCR was at least 95% in individuals with subclinical infection and outperformed RT-LAMP, which had at least 70% sensitivity when compared to NSBs analyzed with a clinical RT-qPCR test. The diagnostic sensitivity for passive drool saliva was higher than that of oral cavity swab specimens (95% and 87%, respectively). A rapid, sensitive one-step extraction-free RT-qPCR test for detecting SARS-CoV-2 in passive drool saliva is operationally simple and can be easily implemented using existing testing sites, thus allowing high-throughput, rapid, and repeated testing of large populations. Furthermore, saliva testing is adequate to detect individuals in an asymptomatic screening program and can help improve voluntary screening compliance for those individuals averse to various forms of nasal collections.


Assuntos
COVID-19/diagnóstico , COVID-19/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Teste para COVID-19/métodos , Humanos , Programas de Rastreamento/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/isolamento & purificação , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Saliva/química , Sensibilidade e Especificidade , Manejo de Espécimes/métodos
8.
Medicina (Kaunas) ; 57(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34684087

RESUMO

Background and Objectives: Methotrexate is widely prescribed for the treatment of moderate-to-severe psoriasis. As drug survival encompasses efficacy, safety, and treatment satisfaction, such studies provide insights into successful drug treatments in the real-life scenario. The objective was to define methotrexate drug survival and reasons for discontinuation, along with factors associated with drug survival, in a cohort of adult patients with moderate-to-severe plaque psoriasis. Materials and Methods: Data on methotrexate treatment were extracted from our institutional registry. Drug survival was estimated by Kaplan-Meier analysis, and predictors of drug survival were analyzed by Cox proportional hazards regression. Results: We included 133 patients treated with methotrexate. Due to significant effects of the year of treatment initiation, drug survival analysis was performed for 117 patients who started methotrexate in 2010 or later. Median methotrexate drug survival was 11.0 months. Overall, 89% of patients discontinued treatment, with over half of these (51%) due to lack of efficacy. Significantly longer drug survival was seen for patients who discontinued treatment due to lack of efficacy versus drug safety (p = 0.049); when stratified by sex, this remained significant only for women (p = 0.002). The patient ABCC2 rs717620 genotype was significantly associated with drug survival in both univariate log-rank and multivariate Cox regression analyses, with variant T allele associated with longer drug survival (hazard ratio, 0.606; 95% confidence interval, 0.380-0.967; p = 0.036). Conclusions: We have identified the novel association of patient ABCC2 rs717620 genotype with methotrexate drug survival. This pharmacogenetic marker might thus help in the management of psoriasis patients in daily practice.


Assuntos
Preparações Farmacêuticas , Psoríase , Adulto , Estudos de Coortes , Feminino , Humanos , Estimativa de Kaplan-Meier , Metotrexato/uso terapêutico , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Psoríase/tratamento farmacológico , Psoríase/genética , Resultado do Tratamento
9.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572784

RESUMO

Continuous treatment of patients with chronic lymphocytic leukemia (CLL) with venetoclax, an antagonist of the anti-apoptotic protein Bcl-2, can result in resistance, which highlights the need for novel targets to trigger cell death in CLL. Venetoclax also induces autophagy by perturbing the Bcl-2/Beclin-1 complex, so autophagy might represent a target in CLL. Diverse autophagy inhibitors were assessed for cytotoxic activities against patient-derived CLL cells. The AMPK inhibitor dorsomorphin, the ULK1/2 inhibitor MRT68921, and the autophagosome-lysosome fusion inhibitor chloroquine demonstrated concentration-dependent and time-dependent cytotoxicity against CLL cells, even in those from hard-to-treat patients who carried del(11q) and del(17p). Dorsomorphin and MRT68921 but not chloroquine triggered caspase-dependent cell death. According to the metabolic activities of CLL cells and PBMCs following treatments with 10 µM dorsomorphin (13% vs. 84%), 10 µM MRT68921 (7% vs. 78%), and 25 µM chloroquine (41% vs. 107%), these autophagy inhibitors are selective toward CLL cells. In these CLL cells, venetoclax induced autophagy, and addition of dorsomorphin, MRT68921, or chloroquine showed potent synergistic cytotoxicities. Additionally, MRT68921 alone induced G2 arrest, but when combined with venetoclax, it triggered caspase-dependent cytotoxicity. These data provide the rationale to target autophagy and for autophagy inhibitors as potential treatments for patients with CLL.

10.
J Med Chem ; 64(11): 7809-7838, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043358

RESUMO

We report on the design, synthesis, and biological evaluation of a series of nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) desmuramylpeptide agonists with improved in vitro and in vivo adjuvant properties. We identified two promising compounds: 68, a potent nanomolar in vitro NOD2 agonist, and the more lipophilic 75, which shows superior adjuvant activity in vivo. Both compounds had immunostimulatory effects on peripheral blood mononuclear cells at the protein and transcriptional levels, and augmented dendritic-cell-mediated activation of T cells, while 75 additionally enhanced the cytotoxic activity of peripheral blood mononuclear cells against malignant cells. The C18 lipophilic tail of 75 is identified as a pivotal structural element that confers in vivo adjuvant activity in conjunction with a liposomal delivery system. Accordingly, liposome-encapsulated 75 showed promising adjuvant activity in mice, surpassing that of muramyl dipeptide, while achieving a more balanced Th1/Th2 immune response, thus highlighting its potential as a vaccine adjuvant.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/química , Adjuvantes Imunológicos/química , Proteína Adaptadora de Sinalização NOD2/agonistas , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Linhagem Celular , Desenho de Fármacos , Humanos , Imunoglobulina G/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipossomos/química , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD2/metabolismo , Ovalbumina/imunologia , Relação Estrutura-Atividade , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/citologia , Células Th2/imunologia , Células Th2/metabolismo
11.
Biomed Pharmacother ; 138: 111456, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714108

RESUMO

Methotrexate is used as first-line treatment of moderate to severe psoriasis. Despite the marked variability in treatment outcomes, no pharmacogenetic markers are currently used for personalised management of therapy. In this retrospective study, we investigated the effects of genetic predisposition on efficacy and toxicity of low-dose methotrexate in a cohort of 137 patients with moderate to severe plaque psoriasis. We genotyped 16 polymorphisms in genes for enzymes involved in the folate-methionine pathway and in methotrexate transport, and analysed their association with treatment efficacy and toxicity using classification and regression tree analysis and logistic regression. The most pronounced effect observed in this study was for GNMT rs10948059, which was identified as a risk factor for inadequate efficacy leading to treatment discontinuation. Patients carrying at least one variant allele had ~7-fold increased risk of treatment failure compared to patients with the wild-type genotype, as shown by the classification and regression tree analysis and logistic regression (odds ratio [OR], 6.94; p = 0.0004). Another risk factor associated with insufficient treatment responses was DNMT3b rs2424913, where patients carrying at least one variant allele had a 4-fold increased risk of treatment failure compared to patients with the wild-type genotype (OR, 4.10; p = 0.005). Using classification and regression tree analysis, we show that DNMT3b rs2424913 has a more pronounced role in patients with the variant GNMT genotype, and hence we suggest an interaction between these two genes. Further, we show that patients with the BHMT rs3733890 variant allele had increased risk of hepatotoxicity (OR, 3.17; p = 0.022), which is the most prominent reason for methotrexate discontinuation. We also show that variants in the genes for methotrexate transporters OATP1B1 (rs2306283/rs4149056 SLCO1B1 haplotypes) and ABCC2 (rs717620) are associated with increased risk of treatment failure. The associations identified have not been reported previously. These data suggest that polymorphisms in genes for enzymes of the methionine cycle (which affect cell methylation potential) might have significant roles in treatment responses to methotrexate of patients with psoriasis. Further studies are warranted to validate the potential of the pharmacogenetic markers identified.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Glicina N-Metiltransferase/genética , Metotrexato/administração & dosagem , Polimorfismo de Nucleotídeo Único/genética , Psoríase/tratamento farmacológico , Psoríase/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Fármacos Dermatológicos/administração & dosagem , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Testes Farmacogenômicos/métodos , Psoríase/diagnóstico , Sistema de Registros , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
12.
Biochem Pharmacol ; 183: 114352, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278351

RESUMO

Treatment of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) has significantly improved more recently with the approval of several new agents, including ibrutinib, idelalisib, and venetoclax. Despite the outstanding efficacies observed with these agents, these treatments are sometimes discontinued due to toxicity, unresponsiveness, transformation of the disease and/or resistance. Constitutive NF-κB activation that protects CLL cells from apoptotic stimuli represents one of molecular mechanisms that underlie the emergence of drug resistance. As prostaglandin E (EP)4 receptor agonists have been shown to successfully inhibit the NF-κB pathway in B-cell lymphoma cells, we investigated the potential of the highly specific EP4 receptor agonist L-902688 for the potential treatment of patients with CLL. We show here that low micromolar concentrations of L-902688 can indeed induce selective cytotoxicity towards several B-cell malignancies, including CLL. Moreover, L-902688-mediated activation of the EP4 receptor in patient derived CLL cells resulted in inhibition of the NF-κB pathway, cell proliferation, and induction of apoptosis. Most importantly, we show for the first time that in combination with ibrutinib, idelalisib, or venetoclax, L-902688 induces synergistic cytotoxic activity against patient derived CLL cells. To conclude, the modulation of NF-κB activity by EP4 receptor agonists represents an innovative approach to improve the treatment of patients with CLL. In particular, EP4 receptor agonists appear to represent promising adjuncts to the already existing therapies for patients with CLL due to these promising synergistic activities.


Assuntos
Adenina/análogos & derivados , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Leucemia Linfocítica Crônica de Células B , Piperidinas/administração & dosagem , Purinas/administração & dosagem , Pirrolidinonas/administração & dosagem , Quinazolinonas/administração & dosagem , Receptores de Prostaglandina E Subtipo EP4/agonistas , Sulfonamidas/administração & dosagem , Tetrazóis/administração & dosagem , Adenina/administração & dosagem , Adulto , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Células Jurkat , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células U937
13.
J Clin Med ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887268

RESUMO

Adequate levels of folates are essential for homeostasis of the organism, prevention of congenital malformations, and the salvage of predisposed disease states. They depend on genetic predisposition, and therefore, a pharmacogenetic approach to individualized supplementation or therapeutic intervention is necessary for an optimal outcome. The role of folates in vital cell processes was investigated by translational pharmacogenetics employing lymphoblastoid cell lines (LCLs). Depriving cells of folates led to reversible S-phase arrest. Since 5,10-methylenetetrahydrofolate reductase (MTHFR) is the key enzyme in the biosynthesis of an active folate form, we evaluated the relevance of polymorphisms in the MTHFR gene on intracellular levels of bioactive metabolite, the 5-methyltetrahydrofolate (5-Me-THF). LCLs (n = 35) were divided into low- and normal-MTHFR activity groups based on their genotype. They were cultured in the presence of folic acid (FA) or 5-Me-THF. Based on the cells' metabolic activity and intracellular 5-Me-THF levels, we conclude supplementation of FA is sufficient to maintain adequate folate level in the normal MTHFR activity group, while low MTHFR activity cells require 5-Me-THF to overcome the metabolic defects caused by polymorphisms in their MTHFR genes. This finding was supported by the determination of intracellular levels of 5-Me-THF in cell lysates by LC-MS/MS. FA supplementation resulted in a 2.5-fold increase in 5-Me-THF in cells with normal MTHFR activity, but there was no increase after FA supplementation in low MTHFR activity cells. However, when LCLs were exposed to 5-Me-THF, a 10-fold increase in intracellular levels of this metabolite was determined. These findings indicate that patients undergoing folate supplementation to counteract anti-folate therapies, or patients with increased folate demand, would benefit from pharmacogenetics-based therapy choices.

14.
Anal Biochem ; 605: 113830, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717185

RESUMO

Inadequate folate status is detrimental to human development. Deficiency has been implicated in congenital birth defects and cancer, whereas excess has been linked to various negative neurocognitive development outcomes. We developed a method for translational studies involving lymphoblastoid cell models for studying role of folates in vital cell processes. We describe a simple, sensitive, and fast liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of intracellular concentrations of clinically important metabolites of folate-homocysteine cycle; namely, folic acid (FA), 5-methyltetrahydrofolate (5-Me-THF), and homocysteine (Hcy). The method was validated for specificity, linearity, limits of quantification, repeatability, reproducibility, matrix effects, and stability. Method had a wide linear range between 0.341 and 71.053 ng Hcy/mg protein for Hcy, 0.004-0.526 ng FA/mg protein for FA and 0.003-0.526 ng 5-Me-THF/mg protein for 5-Me-THF. The method overcomes challenges associated with the quantification of endogenous molecules, poor stability, and extremely small amounts of the analytes. The method was successfully applied to evaluate the effects of FA and 5-Me-THF treatment of cells in vitro mimicking supplement therapy with various metabolically active species, and showed that 5-Me-THF is more effective than FA in increasing intracellular levels of the biologically active form of folate.


Assuntos
Ácido Fólico/análise , Homocisteína/análise , Tetra-Hidrofolatos/análise , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem
15.
Eur J Med Chem ; 190: 112089, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32014680

RESUMO

NOD1 and NOD2 are pattern recognition receptors that have important roles in innate immune responses. Although their overactivation has been linked to a number of diseases, NOD2 in particular remains a virtually unexploited target in this respect, with only one structural class of antagonist reported. To gain insight into the structure-activity relationships of NOD2 antagonists, a series of novel analogs was designed and synthesized, and then screened for antagonist activity versus NOD2, and counter-screened versus NOD1. Compounds 32 and 38 were identified as potent and moderately selective NOD2 antagonists, and 33 and 42 as dual NOD1/NOD2 antagonists, with balanced activities against both targets in the low micromolar range. These data enable in-depth exploration of their structure-activity relationships and provide deeper understanding of the structural features required for NOD2 antagonism.


Assuntos
Anti-Inflamatórios/farmacologia , Benzimidazóis/farmacologia , Proteína Adaptadora de Sinalização NOD2/antagonistas & inibidores , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/toxicidade , Benzimidazóis/síntese química , Benzimidazóis/toxicidade , Desenho de Fármacos , Células HEK293 , Humanos , Estrutura Molecular , Proteína Adaptadora de Sinalização NOD1/antagonistas & inibidores , Relação Estrutura-Atividade
16.
Front Pharmacol ; 11: 614928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551816

RESUMO

Adhesion receptors, such as CD44, have been shown to activate receptor interacting protein kinase-3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling, leading to a non-apoptotic cell death in human granulocyte/macrophage colony-stimulating factor (GM-CSF) - primed neutrophils. The signaling events of this necroptotic pathway, however, remain to be investigated. In the present study, we report the design, synthesis, and characterization of a series of novel serine protease inhibitors. Two of these inhibitors, compounds 1 and 3, were able to block CD44-triggered necroptosis in GM-CSF-primed neutrophils. Both inhibitors prevented the activation of MLKL, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3'-kinase (PI3K), hence blocking the increased levels of reactive oxygen species (ROS) required for cell death. Although compounds one and three partially inhibited isolated human neutrophil elastase (HNE) activity, we obtained no pharmacological evidence that HNE is involved in the initiation of this death pathway within a cellular context. Interestingly, neither serine protease inhibitor had any effect on FAS receptor-mediated apoptosis. Taken together, these results suggest that a serine protease is involved in non-apoptotic CD44-triggered RIPK3-MLKL-dependent neutrophil cell death, but not FAS receptor-mediated caspase-dependent apoptosis. Thus, a pharmacological block on serine proteases might be beneficial for preventing exacerbation of disease in neutrophilic inflammatory responses.

17.
Cell Death Differ ; 27(6): 1965-1980, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31844253

RESUMO

In contrast to the "Warburg effect" or aerobic glycolysis earlier generalized as a phenomenon in cancer cells, more and more recent evidence indicates that functional mitochondria are pivotal for ensuring the energy supply of cancer cells. Here, we report that cancer cells with reduced autophagy-related protein 12 (ATG12) expression undergo an oncotic cell death, a phenotype distinct from that seen in ATG5-deficient cells described before. In addition, using untargeted metabolomics with ATG12-deficient cancer cells, we observed a global reduction in cellular bioenergetic pathways, such as ß-oxidation (FAO), glycolysis, and tricarboxylic acid cycle activity, as well as a decrease in mitochondrial respiration as monitored with Seahorse experiments. Analyzing the biogenesis of mitochondria by quantifying mitochondrial DNA content together with several mitochondrion-localizing proteins indicated a reduction in mitochondrial biogenesis in ATG12-deficient cancer cells, which also showed reduced hexokinase II expression and the upregulation of uncoupling protein 2. ATG12, which we observed in normal cells to be partially localized in mitochondria, is upregulated in multiple types of solid tumors in comparison with normal tissues. Strikingly, mouse xenografts of ATG12-deficient cells grew significantly slower as compared with vector control cells. Collectively, our work has revealed a previously unreported role for ATG12 in regulating mitochondrial biogenesis and cellular energy metabolism and points up an essential role for mitochondria as a failsafe mechanism in the growth and survival of glycolysis-dependent cancer cells. Inducing oncosis by imposing an ATG12 deficiency in solid tumors might represent an anticancer therapy preferable to conventional caspase-dependent apoptosis that often leads to undesirable consequences, such as incomplete cancer cell killing and a silencing of the host immune system.


Assuntos
Proteína 12 Relacionada à Autofagia/fisiologia , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
18.
Med Res Rev ; 39(5): 1447-1484, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30548868

RESUMO

In the last decade, cancer immunotherapy has emerged as an effective alternative to traditional therapies such as chemotherapy and radiation. In contrast to the latter, cancer immunotherapy has the potential to distinguish between cancer and healthy cells, and thus to avoid severe and intolerable side-effects, since the cancer cells are effectively eliminated by stimulated immune cells. The cytosolic nucleotide-binding oligomerization domains 1 and 2 receptors (NOD1 and NOD2) are important components of the innate immune system and constitute interesting targets in terms of strengthening the immune response against cancer cells. Many NOD ligands have been synthesized, in particular NOD2 agonists that exhibit favorable immunostimulatory and anticancer activity. Among them, mifamurtide has already been approved in Europe by the European Medicine Agency for treating patients with osteosarcoma in combination with chemotherapy after complete surgical removal of the primary tumor. This review is focused on NOD receptors as promising targets in cancer immunotherapy as well as summarizing current knowledge of the various NOD ligands exhibiting antitumor and even antimetastatic activity in vitro and in vivo.


Assuntos
Neoplasias/terapia , Nucleotídeos/metabolismo , Antineoplásicos/uso terapêutico , Humanos , Ligantes , Neoplasias/metabolismo , Proteína Adaptadora de Sinalização NOD1/química , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/química , Proteína Adaptadora de Sinalização NOD2/metabolismo , Polimerização , Conformação Proteica , Transdução de Sinais
19.
Biochim Biophys Acta Gen Subj ; 1863(1): 182-190, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308221

RESUMO

BACKGROUND: Methylation driven by thiopurine S-methylatransferase (TPMT) is crucial for deactivation of cytostatic and immunosuppressant thiopurines. Despite its remarkable integration into clinical practice, the endogenous function of TPMT is unknown. METHODS: To address the role of TPMT in methylation of selenium compounds, we established the research on saturation transfer difference (STD) and 77Se NMR spectroscopy, fluorescence measurements, as well as computational molecular docking simulations. RESULTS: Using STD NMR spectroscopy and fluorescence measurements of tryptophan residues in TPMT, we determined the binding of selenocysteine (Sec) to human recombinant TPMT. By comparing binding characteristics of Sec in the absence and in the presence of methyl donor, we confirmed S-adenosylmethionine (SAM)-induced conformational changes in TPMT. Molecular docking analysis positioned Sec into the active site of TPMT with orientation relevant for methylation reaction. Se-methylselenocysteine (MeSec), produced in the enzymatic reaction, was detected by 77Se NMR spectroscopy. A direct interaction between Sec and SAM in the active site of rTPMT and the formation of both products, MeSec and S-adenosylhomocysteine, was demonstrated using NMR spectroscopy. CONCLUSIONS: The present study provides evidence on in vitro methylation of Sec by rTPMT in a SAM-dependant manner. GENERAL SIGNIFICANCE: Our results suggest novel role of TPMT and demonstrate new insights into enzymatic modifications of the 21st amino acid.


Assuntos
Espectroscopia de Ressonância Magnética , Metiltransferases/química , Selênio/química , Selenocisteína/química , Catálise , Domínio Catalítico , Humanos , Cinética , Metilação , Conformação Molecular , Simulação de Acoplamento Molecular , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Selenocisteína/análogos & derivados
20.
Pharmacogenomics ; 19(17): 1311-1322, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30345902

RESUMO

AIM: SNPs in the gene for TPMT exemplify one of the most successful translations of pharmacogenomics into clinical practice. This study explains the correlation between common SNPs and variable number of tandem repeats (VNTR) in promoter of the gene. MATERIALS & METHODS: We determined VNTR polymorphisms, as well as TPMT*2 and TPMT*3 SNPs and TPMT activity in Slovenian and Italian individuals and lymphoblastoid cell lines. RESULTS: We observed a previously unreported VNTR allele, AB7C, in a TPMT*3A heterozygous individual. VNTRs with two (AB2C) and three or more (ABnC, n ≥ 3) B motifs were statistically significant in complete linkage disequilibrium (D' = 1, r2 = 1, p < 0.0001) with the TPMT*3C and TPMT*3A alleles, respectively. CONCLUSION: The study provides insights into the stepwise evolution of TPMT*3 alleles from *3C to *3A, with increasing number of B motifs in the VNTR region.


Assuntos
Metiltransferases/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Sequências de Repetição em Tandem/genética , Alelos , Linhagem Celular , Genótipo , Heterozigoto , Humanos , Desequilíbrio de Ligação/genética , Farmacogenética/métodos , Fenótipo , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...